Transfer of genes into hematopoietic cells using recombinant DNA viruses.

نویسندگان

  • S Karlsson
  • R K Humphries
  • Y Gluzman
  • A W Nienhuis
چکیده

The ability of recombinant DNA viruses to transfer genes into hematopoietic cells has been explored. A recombinant simian virus 40 (SV40) in which the early region had been replaced with the chloramphenicol acetyltransferase (CAT) gene driven by the promoter from Rous sarcoma virus (RSV), was constructed. This virus transferred the CAT gene more efficiently into mouse and human bone marrow cells and into the K562, MEL, and WEHI hematopoietic tissue culture cell lines, than the classical calcium phosphate DNA transfer procedure, as shown by assay for CAT activity 48 hr after infection. Recombinant SV40 virions were also shown to be capable of stably transforming Chinese hamster ovary cells by use of an early region recombinant containing the methotrexate-resistant dihydrofolate reductase (DHFR) gene driven by the RSV promoter. The entire DHFR transcriptional unit could be detected in the genome of transformed cells that were also shown to be resistant to methotrexate. A recombinant adenovirus stock containing the neomycin-resistance gene driven by the SV40 early promoter was used to infect the K562 and MEL hematopoietic cell lines to resistance to the antibiotic G418. Transformation frequency was 10- to 100-fold higher than that obtained with calcium phosphate-precipitated DNA. Most or all of the recombinant adenovirus genome was integrated as 1-3 copies in the transformed cells. These studies show the feasibility of using DNA viruses for introduction of new genetic material into hematopoietic cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Expression and Promoter Methylation Status of VHL, Runx-3, E-cadherin, P15 and P16 Genes During EPO-Mediated Erythroid Differentiation of CD34+ Hematopoietic Stem Cells

Background: VHL (von Hippel-Lindau), Runx-3 (Runt-related transcription factor 3), E-cadherin (Epithelial cadherin), P15 (INK4a, cyclin dependent kinase inhibitor), and P16 (INK4b) genes are essential in hematopoiesis. The aim of this study was to explore the correlation between gene expression and promoter methylation in CD34+ stem cells before and after differentiation to erythroid lineage. M...

متن کامل

Recombinant adeno-associated virus-mediated gene transfer into hematopoietic progenitor cells.

Recombinant adeno-associated viruses (rAAV) containing only the inverted terminal repeats (ITR) from the wild-type virus are capable of stable integration into the host cell genome, and expression of inserted genes in cultured cells. We have now defined the ability of rAAV to introduce genes into primary hematopoietic progenitors. A vector was constructed containing the coding sequences for bet...

متن کامل

Characterization of Immune Responses Induced by Combined Clade-A HIV-1 Recombinant Adenovectors in Mice

Background: Numerous evidences indicate that in some HIV-1 positive patients, the humoral and cellular immune responses are induced against HIV-1 proteins and this is inversely related to the progress of infection. Objective: The aim of this study was the evaluation of the Adenovectors containing HIV genes in induction of immune responses in mice. Methods: The HIV-1 genes including gag p24, rev...

متن کامل

Gene Expression and Promoter Methylation Status of VHL, Runx-3, E-cadherin, P15 and P16 Genes During EPO-Mediated Erythroid Differentiation of CD34+ Hematopoietic Stem Cells

Background: VHL (von Hippel-Lindau), Runx-3 (Runt-related transcription factor 3), E-cadherin (Epithelial cadherin), P15 (INK4a, cyclin dependent kinase inhibitor), and P16 (INK4b) genes are essential in hematopoiesis. The aim of this study was to explore the correlation between gene expression and promoter methylation in CD34+ stem cells before and after differentiation to erythroid lineage. ...

متن کامل

Retroviral Transduction of Fluonanobody and the Variable Domain of Camelid Heavy-Chain Antibodies to Chicken Embryonic Cells

Background: Single domain antibodies from camel heavy chain antibodies (VHH or nanobody), are advantages due to higher solubility, stability, high homology with human antibody, lower immunogenicity and low molecular weight. These criteria make them candidates for production of engineered antibody fragments particularly in transgenic animals. Objective: To study the development of transgenic ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 82 1  شماره 

صفحات  -

تاریخ انتشار 1985